Minggu, 28 Mei 2017

Sistem Pendinginan Pada Cooling Tower

BOILER COOLING TOWER 0

Udara di dalam Mesin Diesel digunakan untuk pembakaran bahan bakar ( solar). Kabut solar dicampur dengan udara pada tekanan dan suhu tinggi sehingga akan terjadi pembakaran yang menghasilkan tenaga. Perbandingan antara kabut solar dan volume diatur sedemikian sehingga pada keadaan beban penuh, kabut solar habis terbakar oleh udara yang dimasukan ke dalam silinder. Bahan bakar dan udara harus dalam perbandingan yang tepat, kekurangan udara akan mengakibatkan merusak mesin, yaitu mengakibatkan pembakaran kurang sempurna dan terjadilah kerak ( arang) di dalam silinder.

Sistem penyaluran udara juga dapat menyebabkan Hal-hal yang umumnya dapat merusak mesin antara lain :
a.      Penyetelan tekanan pengaturan nozzale yang terlalu tinggi
b.     Mesin bekerja lama dengan beban rendah
c.      Mesin sering bekerja tanpa beban
d.     Saluran pembuangan ( knalpot) yang kotor, akan menghambat keluarnya asap dan mempercepta kenaikan kadar arang dalam saluran dan akhirnya mempercepat terjadinya kerak
Dalam praktek sistem penyaluran udara kelebihan bahan bakar dibanding dengan jumlah udara ini ditandai dengan asap hitam ke luar dari knalpot. Untuk keperluan start mesin, orang membuat agar udara yang dimasukan kedalam mesin tidak dingin ( hangat), sebab udara dingin sukar bersenyawa dengan bahan bakar.

Agar Supaya proses pendinginan ini berlangsung efektif, maka perlu dijaga kebersihan dari sirip-sirip silinder.
Udara yang dihembuskan kuat oleh blower disalurkan ke dalam tabung udara dan membawa panas ke luar sirip. Harus diusahakan agar udara panas ini tidak tertarik lagi oleh blower . Udara yang masuk haruslah udara luar yang masih segar dan dingin perlu juga untuk membersihkan jendela-jendeka kaca yang dipasang di ruang mesin.



Gb. 5 Sistem sirkulasi udara mesin dengan turbo chrager.

BOILER COOLING TOWER 0
Sistem Pendingin

Sistem pendinginan sangat penting artinya bagi keawetan suatu mesin, pada waktu berjalan mesin akan menjadi panas, karena proses pembakaran di dalam silinder, mesin yang terlalu panas, selain cepat rusak juga out put tenaganya kurang maksimal maka diperlukan pendinginan, umumnya sistem pendinginan dibagi menjadi dua macam, yaitu :
                        a.   Sistem pendinginan air
                        b.   Sistem pendinginan udara
a.   Sistem Pendinginan Air
Air memasuki blok silinder dari bagian bawah silinder, mengalir melalui saluran-saluran blok silinder terus ke atas menuju silinder head. Air menyerap panas dari mesin sehingga suhu air nai air yang panas ini cenderung mengalir karena perbedaan berat jenis. Air semakin menjadi panas sewaktu berada di sekitar kepala silinder, air yang telah panas harus didinginkan kembali.
Apabila sampai mendidih hal ini menunjukkan adanya gangguan dalam sistem pendinginan tersebut.
Air mengalir ke bawah dari bagian atas radiator melalui pipa-pipa radiator, udara dihembuskan melintasi radiator ke arah depan genset, terjadilah proses pendinginan udara, udara ini menghembus keras karena adanya kipas yang berputar di belakang radiator. Pada saat air sampai di bagian bawah radiator, air menjadi dingin dan masuk kembali ke blok silinder dari bawah untuk mendinginkan mesin.
Demikianlah proses pendinginan berulang dan terjadilah sirkulasi air pendinginan. Bagaimanapun juga ada sebagain air yang menguap.
Maka setiap kali perlu diperiksa permukaan air pendinginan ini. Apabila perlu harus ditambah supaya alran air dapat berjalan lebih cepat, harus ada pompa air yang dipergunakan untuk mendorong air mengalir sehingga dengan demikian daya pendinginan dapat di percapat, sehingga sistem pendingin tersebut merupakan suatu cara pendinginan yang baik
b.  Sistem Pendinginan Udara
Berbeda dengan sistem pendinginan air, di sini silinder-silinder tidak ditempatkan dalam suatu blok silinder melainkan pada tiap silinder diberi semacam sirip, gunanya sirip ialah untuk menyerap panas dari silinder kepala dengan sirip-sirip ini berarti memperluas permukaan yang dapat menyerap panas tersebut dapat dilepaskan ke luar bersama udara yang dihembuskan dengan kuat oleh kipas atau blower.

BOILER COOLING TOWER 0
Air Sebagai Bahan Utama Cooling Tower & Boiler

Kegunaan air dalam proses industri sangat banyak sekali, selain sebagai air baku pada industri air minum dan pemutar turbin pada pembangkit tenaga listrik, juga sebagai alat bantu utama dalam kerja pada proses – proses industri. Selain itu juga air digunakan sebagai sarana pembersihan ( cleaning ) baik itu cleaning area atau alat – alat produksi yang tidak memerlukan air dengan perlakuan khusus atau cleaning dengan menggunakan air dengan kualitas dan prasyarat tertentu yang membutuhkan sterilisasi dan ketelitian yang tinggi. Dalam hal ini pembahasan difokuskan pada air sebagai penghasil energi kalor dan sebagai penyerap energi kalor ( pendingin ) dalam industri pada umumnya.

A. Air umpan boiler

Boiller adalah tungku dalam berbagai bentuk dan ukuran yang digunakan untuk menghasilkan uap lewat penguapan air untuk dipakai pada pembangkit tenaga listrik lewat turbin, proses kimia, dan pemanasan dalam produksi.

Sistem kerjanya yaitu air diubah menjadi uap. Panas disalurkan ke air dalam boiler, dan uap yang dihasilkan terus – menerus. Feed water boiler dikirim ke boiler untuk menggantikan uap yang hilang. Saat uap meninggalkan air boiler, partikel padat yang terlarut semula dalam feed water boiler tertinggal.

Partikel padat yang tertinggal menjadi makin terkonsentrasi, dan pada saatnya mencapai suatu level dimana konsentrasi lebih lanjut akan menyebabkan kerak atau endapan untuk membentuk pada logam boiler.

Ketidaksesuaian kriteria air umpan boiler menurut baku mutu diatas akan mempengaruhi berbagai hal, misalnya :

1. Korosi

Peristiwa korosi adalah peristiwa elektrokimia, dimana logam berubah menjadi bentuk asalnya akibat dari oksidasi yang disebabkan berikatannya oksigen dengan logam, atau kerugian logam disebabkan oleh akibat beberapa kimia

Penyebab korosi Boiller:

Oksigen Terlarut
Alkalinity ( Korosi pH tinggi pada Boiler tekanan tinggi )
Karbon dioksida ( korosi asam karbonat pada jalur kondensat )
Korosi khelate ( EDTA sebagai pengolahan pencegah kerak )
Akibat dari peristiwa korosi adalah penipisan dinding pada permukaan boiler sehingga dapat menyebabkan pipa pecah atau bocor.

2. Kerak

Pengerakan pada sistem boiler :

Pengendapan hardness feedwater dan mineral lainnya
 Kejenuhan berlebih dari partikel padat terlarut ( TDS ) mengakibatkan tegangan permukaan tinggi dan gelembung sulit pecah
Kerak boiler yang lazim : CaCO3, Ca3 (PO4)2, Mg(OH)2, MgSiO3, SiO2, Fe2(CO3)3, FePO4
3. Endapan

Pembekuan material non mineral pada boiler, umumnya berasal dari:

Oksida besi sebagai produk korosi
Materi organic ( kotoran – bio, minyak dan getah ), Boiler bersifat alkalinity jika terkena gliserida maka akan terjadi reaksi penyabunan.
Partikel padat tersuspensi dari feedwater ( tanah endapan dan pasir )
Dari peristiwa – peristiwa ini mengakibatkan terbentuknya deposit pada pipa superheater, menyebabkan peristiwa overheating dan pecahnya pipa, terbentuknya deposit pada sirip turbin, menyebabkan turunnya effisiensi

B. Air pendingin dan sirkulasi sebagai Cooling tower dan Chiller

Colling tower atau menara pendingin adalah suatu sistem pendinginan dengan prinsip air yang disirkulasikan. Air dipakai sebagai medium pendingin, misalnya pendingin condenser, AC, diesel generator ataupun mesin – mesin lainnya.

Jika air mendinginkan suatu unit mesin maka hal ini akan berakibat air pendingin tersebut akan naik temperaturnya, misalnya air dengan temperature awal ( T1 ) setelah digunakan untuk mendinginkan mesin maka temperaturnya berubah menjadi ( T2 ). Disini fungsi cooling tower adalah untuk mendinginkan kembali T2 menjadi T1 dengan blower / fan dengan bantuan angin. Demikian proses tersebut berulang secara terus menerus.

Sedangkan pada chiller temperature yang dibutuhkan relative lebih rendah dibandingkan penggunaan Colling tower.

Beda antara cooling dan chiller adalah pada sistem yang digunakan. Maksudnya, bila cooling adalah sistem terbuka sedangkan pada chiller adalah sistem tertutup sehingga proses penguapan lebih rendah dibandingkan dengan sistem terbuka.

Sistem air cooling dapat dikategorikan dua tipe dasar, sebagai berikut :

1. Sistem air cooling satu aliran

Sistem air cooling satu arah adalah satu diantara aliran air yang hanya melewati satu kali penukar panas. Dan lalu dibuang kepembuangan atau tempat laindalam proses.

Sistem tipe ini mempergunakan banyak volume air. Tidak ada penguapan dan mineral yang terkandung didalam air masuk dan keluar penukar panas. Sistem air cooling satu arah biasa digunakan pada terminal tenaga besar dalam situasi tertutup dari air laut atau air sungai dimana persediaan air cukup tinggi.

2. Sistem air cooling sirkulasi

Pada sistem sirkulasi terbuka ini, air secara berkesinambungan bersikulasi melewati peralatan yang akan didinginkan dan menyambung secara seri. Transfer panas dari peralatan ke air, dan menyebabkan terjadinya penguapan ke udara. Penguapan menambah konsentrasi dan padatan mineral dalam air dan ini adalah efek kombinasi dari penguapan dan endapan, yang merupakan konstribusi dari banyak masalah dalam pengolahan dengan sistem sirkulasi terbuka.

Pada peristiwa sirkulasi air ini, akan terjadi proses – proses sebagai berikut :

a. Pendinginan air cooling tower adakah atas dasar penguapan ( Evaporasi )

Pada peristiwa fisika dikenal prinsip “ jumlah kalor yang diterima = jumlah kalor yang dilepaskan “. Kalor untuk melakukan pendinginan dari T2 menjadi T1 sama dengan kalor penguapan atau dengan kata lain air tersebut menjadi dingin dikarenakan sebagian dari air tersebut menguap.

Untuk cooling tower, besarnya penguapan dapat dihitung bila diketahui kapasitas pompa sirkulasi ( m3/jam )

b. Pada air Cooling tower terjadi pemekatan Garam.

Dengan adanya penguapan maka lama kelamaan seluruh mineral yang tidak dapat menguap akan berkumpul sehingga terjadi pemekatan. Dengan banyaknya mineral yang terkandung pada air Cooling tower perlu dilakukan proses Bleed Off dan penambahan air make up. Air yang menguap adalah air yang murni bebas dari garam – garam mineral dengan konsentrasi = 0. Pada cooling tower dapat diketahui siklus air pada unit cooling tower adalah dengan cara :

Dengan rumus

Cycle = Tower water chloride

Make up water chloride

Tanpa menggunakan parameter khlorida, siklus dapat diketahui dengan membaca konduktivity, yaitu dengan membandingkan konduktivity air tower dengan konduktivity air make up.

Masalah yang sering timbul dalam pada seluruh sistem air cooling adalah:

Korosif
Pada pH yang rendah menyebabkan terjadinya korosi pada logam. Begitu juga nitrifying. Penyebab lain adalah dengan adanya bakteri yang dapat menghasilkan asam sulfat. Bakteri yang memiliki kemampuan untuk mengubah hydrogen sulfide menjadi sulfur kemudian mengubah menjadi asam sulfat. Bakteri ini menyerang logam besi, logam lunak dan steiless steel, hidup sebagai anaerobic ( tanpa udara )

Kerak
Pembentukan kerak diakibatkan oleh kandungan padatan terlarut dan material anorganik yang mencapai limit control.

Metode yang digunakan untuk mencegah terjadinya pembentukan kerak antara lain :

1. Menghambat kerak dengan mengontrol pH

Dalam keadaan asam lemah ( kira – kira pH 6,5 ). Asam sulfat yang paling sering digunakan untuk ini, memiliki dua efek dengan memelihara pH dalam daerah yang benar dan mengubah kalsium karbonat, ini memperkecil resiko terbentuknya kerak kalsium sulfat. Ini memperkecil resiko terbentuknya kerak kalsium karbonat dan membiarkan cycle yang tinggi dari konsentrasi dalam sistem.
Mengontrol kerak dengan bleed off

Bleed off pada sirkulasi air cooling terbuka sangat penting untuk memastikan bahwa air tidak pekat sebagai perbandingan untuk mengurangi kelarutan dari garam mineral yang kritis. Jika kelarutan ini berkurang kerak akan terbentuk pada penukar panas.
Mengontrol kerak dengan bahan kimia penghambat kerak.

Bahan kimia umumnya berasal dari organic polimer, yaitu polyacrilik dan polyacrilik buatan.

Masalah mikrobiologi
Microorganisme juga mampu membentuk deposit pada sembarangan permukaan. Hampir semua jasad renik ini menjadi kolektor bagi debu dan kotoran lainnya. Hal ini dapat menyebabkan efektivitas kerja cooling tower menjadi terganggu.

Masalah kontaminasi
Keadaan cooling tower yang terbuka dengan udara bebas memungkinkan organisme renik untuk tumbuh dan berkembang pada sistem, belum lagi kualitas air make up yang digunakan.

BOILER COOLING TOWER 0
Prinsip kerja Cooling Tower

Salah satu komponen utama pada AC sentral selain chiller, AHU, dan ducting adalah cooling tower atau menara pendingin. Fungsi utamanya adalah sebagai alat untuk mendinginkan air panas dari kondensor dengan cara dikontakkan langsung dengan udara secara konveksi paksa menggunakan fan/kipas. Konstruksi cooling tower terdiri dari system pemipaan dengan banyak nozzle, fan/blower, bak penampung, casing, dsb.
Proses yang terjadi pada chiller atau unit pendingin untuk system AC sentral dengan system kompresi uap terdiri dari proses kompresi, kondensasi, ekspansi dan evaporasi. Proses ini terjadi dalam satu siklus tertutup yang menggunakan fluida kerja berupa refrigerant yang mengalir dalam system pemipaan yang terhubung dari satu komponen ke komponen lainnya. Kondensor pada chiller biasanya berbentuk water-cooled condenser yang menggunakan air untuk proses pendinginan refrigeran. Secara umum bentuk konstruksinya berupa shell & tube dimana air mengalir memasuki shell/ tabung dan uap refrigeran superheat mengalir dalam pipa yang berada di dalam tabung sehingga terjadi proses pertukaran kalor. Uap refrigeran superheat berubah fasa menjadi cair yang memiliki tekanan tinggi mengalir menuju alat ekspansi, sementara air yang keluar memiliki temperatur yang lebih tinggi. Karena air ini akan digunakan lagi untuk proses pendinginan kondensor maka tentu saja temperaturnya harus diturunkan kembali atau didinginkan pada cooling tower. Langkah pertama adalah memompa air panas tersebut menuju cooling tower melewati system pemipaan yang pada ujungnya memiliki banyak nozzle untuk tahap spraying atau semburan. Air panas yang keluar dari nozzle secara langsung melakukan kontak dengan udara sekitar yang bergerak secara paksa karena pengaruh.fan/blower yang terpasang pada cooling tower. Sistem ini sangat efektif dalam proses pendinginan air karena suhu kondensasinya sangat rendah mendekati suhu wet-bulb udara. Air yang sudah mengalami penurunan temperature ditampung dalam bak/basin untuk kemudian dipompa kembali menuju kondensor yang berada di dalam chiller. Pada cooling tower juga dipasang katup make up water yang dihubungkan ke sumber air terdekat untuk menambah kapasitas air pendingin jika terjadi kehilangan air ketika proses evaporative cooling tersebut. Prestasi menara pendingin biasanya dinyatakan dalam “range” dan “approach”, dimana range adalah penurunan suhu air yang melewati cooling tower dan approach adalah selisih antara udara suhu udara wet-bulb dan suhu air yang keluar. Perpindahan kalor yang terjadi pada cooling tower berlangsung dari air ke udara tak jenuh. Ada dua penyebab terjadinya perpindahan kalor yaitu perbedaan suhu dan perbedaan tekanan parsial antara air dan udara. Suhu pengembunan yang rendah pada cooling tower membuat sistem ini lebih hemat energi jika digunakan untuk system refrigerasi pada skala besar seperti chiller. Salah satu kekurangannya adalah bahwa sistem ini tidak praktis karena jarak yang jauh antara chiller dan cooling tower sehingga memerlukan system pemipaan yang relative panjang. Selain itu juga biaya perawatan cooling tower cukup tinggi dibandingkan system lainnya.

Kami merupakan kontraktor yang telah berpengalaman dan profesional.


Hubungi (021) 5900629 atau 085100333130
Email info@mechatronicgroup.com Sistem Pendinginan Pada Cooling Tower - Hai pembaca General Kontraktor, Kontraktor Elektrikal & Mekanikal, Design System, Maintenance, Pada Artikel yang anda baca kali ini dengan judul Sistem Pendinginan Pada Cooling Tower, kami telah mempersiapkan artikel ini dengan baik untuk anda baca dan ambil informasi didalamnya. mudah-mudahan isi postingan yang kami tulis ini dapat anda pahami. baiklah, selamat membaca.

Judul : Sistem Pendinginan Pada Cooling Tower
link : Sistem Pendinginan Pada Cooling Tower

Baca juga


Sistem Pendinginan Pada Cooling Tower



Demikianlah Artikel Sistem Pendinginan Pada Cooling Tower

Sekianlah artikel Sistem Pendinginan Pada Cooling Tower kali ini, mudah-mudahan bisa memberi manfaat untuk anda semua. baiklah, sampai jumpa di postingan artikel lainnya.

Anda sekarang membaca artikel Sistem Pendinginan Pada Cooling Tower dengan alamat link http://industrimanufakturtangerang.blogspot.com/2017/05/sistem-pendinginan-pada-cooling-tower.html

0 komentar:

Posting Komentar